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Abstract
Due to the recency and relatively limited adoption of
Semantic Web technologies, practical issues related to
technology scaling have received less attention than
foundational issues.  Nonetheless, these issues must be
addressed if the Semantic Web is to realize its full potential.
In particular, we concentrate on the lack of scoping methods
that reduce the size of semantic information spaces so they
are more efficient to work with and more relevant to an
agent’s needs.  We provide some intuition to motivate the
need for such reduced information spaces, called
workspaces, give a formal definition, and suggest possible
methods of deriving them.

Introduction
The technologies of the Semantic Web have yet to achieve
the widespread adoption of the World Wide Web.  To date,
researchers have focused more on foundational issues (e.g.,
representational formats and capabilities) than on
pragmatic issues of scale or efficiency.  Ultimately, these
practical issues will need to be addressed if the Semantic
Web is to gain widespread adoption.  In this paper, we
focus on one such important issue involving mechanisms
for filtering and restricting the set of knowledge statements
(e.g., RDF triples) available within a semantic information
space, depending on the application context. There are
numerous pragmatic reasons why one needs to restrict a
semantic space, for example to decrease the search space,
limit the scope of reasoning, to improve reasoning
efficiency, to reduce information overload, and to
customize visual presentations for human users.

As an example, consider an agent searching for “in-plan”
providers of a specific medical treatment, as described in
Berners-Lee et al.’s influential Scientific American  article
on the Semantic Web (Berners-Lee et al. 2001).  Let us
presume that there is a semantically marked-up data source
that serves as a directory of medical providers.  In this
case, what steps must be taken for the agent to find the
appropriate information?  First, it is unlikely that the agent
and the directory use the same ontology, so some form of
ontology alignment will probably be necessary; this
problem has received considerable attention (Kalfoglou
and Schorlemmer 2003; Noy 2004).  Second, the directory
is not likely to be structured in a way that is best suited for

the agent’s search.  The directory may include providers
outside the local geographic area, or providers in the wrong
specialty area, or it may not make any mention of which
providers belong to which insurance plans.  In essence, the
agent is faced with finding a needle in a haystack; the
information it seeks is in the repository, along with a great
amount of irrelevant information, and there is no easy way
to separate the relevant from the irrelevant.  The result is
information overload.

One approach to identify the relevant information is to
access all potentially relevant information in the directory
and use reasoning to restrict the scope.  The problem with
this approach is one of scale; the more information that is
accessed, the more time and computing resources required
to store and process the data.  Alternatively, if the directory
supports searching, the agent may try to scope the space by
forming a query that more accurately describes the
information request.  This approach, too, has its drawbacks.
The directory may not support sophisticated queries.
Differences in the agent and directory ontologies may
require that the query scope be broadened.  Finally, the
precise query may be very complex, making it difficult to
derive and verify that the query will return exactly the
desired information.

Information Overload in SemanticOrganizer
We have repeatedly encountered the need to restrict the
information space in our work on SemanticOrganizer
(Keller et al. 2004), a semantic repository that allows users
to store knowledge about work-related items (such as
documents, datasets, persons, and other domain-specific
concepts) and the interrelationships among these items.
SemanticOrganizer has over 500 registered users ranging
from occasional users to those who use SemanticOrganizer
on a regular basis as the primary storage and retrieval
system for their work-related knowledge products.  Its
single ontology covers a wide variety of domains, from
project management to scientific inquiry to accident
investigation.  SemanticOrganizer has over 400 ontology
classes defined, with 45,000 instances of those classes and
150,000 semantic links between these instances.

The SemanticOrganizer system supports various methods
of searching and browsing of this information, but as the



size of the repository grows, it produces more dense
information displays and voluminous search results – even
though much of the information displayed to a user may be
irrelevant to their current needs and work context. This
problem has forced us to consider methods of restricting
the user’s information space.

Access permissions, defined on instances within
SemanticOrganizer, reduce the amount of information
available to a given user but do not fully solve the problem.
Because access permissions are intended to prevent
unauthorized access rather than access to irrelevant
information, they are not an appropriate mechanism for
restricting the information space based on relevancy: the
problem is not what is accessible, but what is relevant to
the user. SemanticOrganizer partially addresses this by
allowing users to restrict their semantic space to only
instances of certain concepts (i.e., filtering out instances of
irrelevant classes). Nonetheless, finer-grained techniques
are needed to further reduce information overload -- there
may be irrelevant instances of a relevant concept, and
irrelevant knowledge statements (i.e., RDF triples) that
refer to a relevant instance.

It is possible to view the process of restricting an agent’s
information space in terms of a series of filtering
operations. Consider the following example. Imagine that
an accident investigator is browsing information in the
SemanticOrganizer repository to orientate herself with a
near-miss accident involving equipment failure during an
experiment performed in a wind tunnel.  Some information
would be protected through access permissions and would
not be available to the investigator, for instance, the
salaries of the employees stationed at the wind tunnel.
However, additional information could also be filtered out
as irrelevant to any  investigation, for instance, the
investigator’s salary. Finally, information that is both
relevant to investigations in general and accessible to the
investigator, but not relevant to the investigation at hand
could be filtered out; for instance, water samples taken at
the wind tunnel during a previous investigation of a
Legionella pneumophila outbreak. The information that
remains after all the filtering operations are complete is
considered part of the investigator’s current workspace.

The information-scoping problem we have encountered in
SemanticOrganizer is a specialization of the more general
problem of establishing a common context for
communication between two agents, with our specific
agents being SemanticOrganizer, on one hand, and a
human user, on the other.  Our human agents are resource
bound just as software agents are, with limits on time and
processing power.  By establishing a shared context
appropriate for the current situation, users can increase
their  eff ic iency when “convers ing” with
SemanticOrganizer.  In particular, users will spend less
time aligning their mental models to that of
SemanticOrganizer.  In addition, since the amount of

information in a workspace is a subset of the overall
information space, users will spend less time sifting
through irrelevant information.

Related Work
The problem of restricting an information space to a
relevant subset has been the focus of information retrieval
(IR), where the problem is usually regarded as retrieving a
set of documents from a corpus (see (Salton 1983) for an
overview).  Typically, the user selects some set of
keywords that capture the area of interest, and these
keywords are used to query the corpus.  The bulk of
information retrieval techniques do not make explicit use
of semantics, and instead use statistical methods to retrieve
relevant documents.

Search queries can be viewed as another way of restricting
one’s view to a relevant subset.  Unlike information
retrieval techniques, the search terms must explicitly
characterize the subset. Query languages are usually quite
expressive, but precise query results often require highly
complex queries. As a result, query languages alone are not
ideal for adequately scoping the relevant subset.  Query
languages for the Semantic Web are still evolving, with a
variety of languages currently available (Haase et al. 2004).
In databases, views defined by queries have been used to
limit the scope of subsequent operations.  Similarly,
variants of RQL have been designed to define a view on a
Semantic Web (Maganaraki et al. 2004; Volz et al. 2002).

We have previously suggested a method of restricting a
user’s view of a semantic repository by choosing a subset
of an ontology called an application module (Keller et al.
2004).  Each application module contains only the classes
that are relevant to a particular domain.  Knowledge
statements that refer to instances of classes not in the
application module are filtered out.  In addition to filtering,
application modules provide some presentation
characteristics that allowed users to view instances using
their own terminology.

Noy and Musen devised a method for specifying a subset
of an ontology through traversal (Noy and Musen 2004).
Their focus was primarily on facilitating ontology re-use.
Rather than exporting an entire ontology, a user could
formulate the relevant portion of the ontology by
specifying key concepts and then traversing to related
concepts using a traversal directive.  Since a procedure can
be specified to define the desired subset of the ontology,
rather than explicitly choosing the ontology, traversal
views offer a greater flexibility and dynamism than the
application modules of Keller et al.



Examples of Workspaces
What constitutes an effective workspace will change over
time, depending on the intent of the agent.  To illustrate the
circumstantial nature of workspaces, we present illustrative
examples describing the types of workspaces required by
an investigator named John during various phases of his
work as part of an accident investigation team.

Workspaces Based on the Domain
As John joins the investigation team, his first objective is
to familiarize himself with the investigation conducted thus
far.  John is primarily browsing through the information
related to the investigation at this point; he does not have
specific information to search for nor does he know what
kind of information is available.  To support this initial
browsing activity, it makes sense to restrict the workspace
to only those knowledge statements that apply directly to
the investigation at hand.  Other information, such as
similar investigations at other sites or other investigations
at the same site might prove useful to John at a later time,
but would currently only make his initial orientation more
difficult.

Workspaces Based on a Specific Goal
As John becomes more familiar with the investigation, he
naturally proceeds to develop hypotheses, for instance, that
poor maintenance procedures led to the failure of a
particular machine part.  To test his hypothesis, John
wishes to restrict his view to only those knowledge
statements that relate to the machine of interest and/or
maintenance.  However, John may choose to consider
historical information from other investigations relating to
these topics, to find other examples of failures, changes in
maintenance procedures, or previous uses of the failed part.

Workspaces Based on Time
Over time, the shape of the investigation changes; new
evidence has eliminated some hypotheses and led to new
areas of inquiry.  To keep abreast of the growing areas of
the investigation, John restricts his workspace to include
only knowledge statements that have been recently added,
for instance statements added during the last week.  By
doing so, John is directed towards new evidence that would
need to be evaluated as well as new hypotheses developed
by his co-investigators.  Older knowledge statements are
no less true, but are no longer novel and therefore of less
interest.

Workspaces Based on Task
Finally, as the investigation wraps up, John is tasked with
developing a report of the investigation’s findings and
recommendations.  John needs to consider information
from all phases of the investigation now, not just the most
recently added.  However, he is less interested in the details

of supporting evidence than in the proven hypotheses, and
has no interest at all in the disproven hypotheses.  Though
John is primarily interested in the current investigation, he
wants to bring information from other investigations into
his workspace, for example if they discussed findings
related to the investigation at hand.

These examples support our viewpoint that the notion of an
“appropriate” workspace within SemanticOrganizer is a
highly situated notion; the subset of knowledge statements
that are relevant to the user at any given point in time
depends on the user’s work context.

Workspace Definition
Having developed our intuition about workspaces, we now
present a more formal definition, illustrated in Figure 1. A
workspace is defined with respect to two agents, one a
source of information (an information-providing agent:
IPA), and the other a requestor of information (an
information-requesting agent: IRA).

Let KSIPA be the set of knowledge statements held true by
the IPA.

Let PIRA⊆KSIPA be the subset of statements that the
information-providing agent chooses to publish to the
information-requesting agent.

Let RIRA⊆KSIPA be the subset of statements that fit some
notion of relevancy held by IRA.

Let CIRA⊆KSIPA be the subset of statements that can be
mapped into the vocabulary used by the IRA. (We assume
that there is a partial mapping from statements in the IPA’s
vocabulary to statements in the IRA’s vocabulary – an
ontology alignment.) CIRA constitutes the subset of the
IPA’s statement that the IRA can understand.

With respect to a given IPA, a workspace, W, is defined for
a given IRA as follows:

           W = PIRA ∩ RIRA ∩ CIRA

The workspace for the information-requesting agent is thus
defined as the subset of the information-provider’s
knowledge that the agent is allowed to see, that it can
understand, and that is relevant.



Deriving Workspaces
To derive a workspace, all three of its component subsets
must be known. We will presume that the information
provider already knows what knowledge statements it is
willing to divulge to the information requester, i.e., that it
already knows what information it must keep private.
Deciding what statements can be translated to the
information requester’s ontology necessarily involves
ontology alignment, another hard problem unto itself that is
an area of active research.  Within the SemanticOrganizer
system, the need to align these ontologies was obviated by
application bundles, in which ontology specialists
customize the master ontology based on the information
requester’s vocabulary. In what follows, we will
concentrate on how to define the third subset – the subset
of knowledge statements (RIRA) that fit some notion of
relevancy for the information requester.  We present three
ways to define or derive this relevant subset, with each
method varying with respect to the amount of semantic
interpretation required.

Derivation Via Explicit Selection
The simplest, most obvious method is to manually select
the relevant subset of statements, for example by a human
knowledge engineer familiar with the agent’s context of
usage.  Manual selection results in the highest quality
definition of the relevant subset, but requires the most
effort. This method is justified if the manual labor can be
amortized over many uses by one or more information
requester. For instance, once a workspace is defined for a
particular investigation, it could be shared by all the
investigators. On the other hand, this method represents no
overall reduction of effort if the workspace is used once or
infrequently. As with any subset selection method,
additions to the overall set of knowledge statements KSIPA
would require updating of the relevant subset; since this
method is manual, updating can be a significant concern,
depending on the frequency of updates.

Derivation Via Description
An alternative to manual selection of relevant knowledge
statements is to declaratively describe the relevant subset in

Figure 1: A graphical depiction of a workspace, W, defined for an Information-Requesting Agent (IRA) querying an
Information-Providing Agent (IPA).  At left is the set of knowledge statements (KS) held true by the IPA; at right is
the set of knowledge statements expressible by the IRA. W is defined by the intersection of three subsets of statements
held by the IPA: P is the set of statements that the IPA has published to the IRA; R is the set of statements that are
relevant to the IRA; and CIS is the set of statements that have a mapping into the vocabulary understood by the IRA



terms of a formal language. The description represents an
abstraction of the relevant subset and should require less
manual effort to construct than the explicit selection.  In
contrast to the explicit method above, as knowledge
statements are added to KSIPA, the existing description
would be used to make the selections, requiring no further
effort.  This method requires less work than the manual
method, but produces a relevant subset that contains a
higher number of both irrelevant knowledge statement
(false positives) and missing relevant knowledge
statements (false negatives).

Derivation Via Ontology-Neutral Learning
Methods
Finally, learning methods that use ontology-neutral
approaches could be used to drastically reduce the amount
of effort required for an agent to define the relevant subset.
Such approaches are based on either structural properties of
the information space, such as graph connectivity, or meta-
concepts and relationships that are relevant across
ontologies (for instance, utilizing subsumption or identity
relationships, but not domain specific relations). These
learning techniques would require limited input if at all –
possibly a few training examples.  The use of limited
amounts of input and lack of domain knowledge will
generally result in less accurate results than the previous
two more knowledge-intensive methods. Nonetheless, due
to the amount of labor involved in manually choosing the
relevant subset or describing the relevant subset, such
automated methods offer a useful alternative when lower
quality subsets are acceptable.

A Simple Experiment
In order to start exploring the space of domain-independent
learning approaches, we turned again to the investigation
domain of SemanticOrganizer.  Four mishap investigations
have been supported in SemanticOrganizer (Carvalho et al.
2005): the Columbia shuttle, CONTOUR probe, HELIOS
autonomous aircraft, and Canard Rotor Wing (CRW)
investigations.  Much of the information in these
investigations is disjoint, since they occurred at different
times, as part of different missions, and involved nearly
completely disjoint mission teams.  Moreover, most of the
common information that could have been included within
several investigations was instead (re-)defined separately
as part of each new investigation.  Therefore, there were
very few common instances among the investigations.
There were a few links crossing between instances
included in different investigations, though not many.

Experiment Setup
We considered the case of a single user who has access to
information in several investigations, but needs to restrict
his view to the subset of information relevant to a single
investigation. To define a gold standard for evaluating the
formation of the relevant subset, we accessed the accounts

of other users who each had involvement in only a single
investigation. We used the access permissions of each
other user to define the relevant subset of instances for
their investigation. In order to simplify the experiment, we
focused only on identifying relevant instances rather than
considering the more numerous relevant knowledge
statements.

Our goal is to derive these relevant subsets of instances
automatically – in this case to derive each subset of
instances relevant to a specific investigation.   Using the
information available to us in SemanticOrganizer, we
devised the following experiment.  First, we took the union
of all the instances and links available to the
aforementioned user from all four accounts- this constitutes
the items accessible across investigations.  Second, to
restrict the area to only the domain of investigations, we
filtered out all information that was not part of the domain
of discourse of investigations (for instance, some
information on the ontology itself was represented).
Finally, we created a simple algorithm to group the
instances into clusters around each investigation.

The Algorithm
Our algorithm takes as input a network of nodes and edges
(e.g., an RDF graph), already filtered by permissions and
an area of discourse, and focal instances  that define
relevant subsets of instances.  Each focal instance is the
starting point for a cluster; in our experiment we had four
such focal instances, namely each instance of the
Investigation class.  The algorithm produces as output one
subset of instances for each focal instance.  These subsets
may overlap, and the union of these subsets may not
include all instances from the original graph.  We used the
shortest path through the network from an instance to each
focal instance as a simple heuristic for deriving the subsets.
Each instance was placed within the cluster of the focal
instance to which it was closest; if it was equally close to
more than one focal instance, it was put in the cluster of
each such focal instance.  We present the pseudocode of
this algorithm below:

For every focal instance F
Define SF = {}

For every instance n in G
Let C be the set of focal instances closest to n
For every focal instance F in C

Add n to SF

Return : All sets SF corresponding to each focal
instance F

Our intuition was that this algorithm should perform well
on this particular task.  However, the network was
connected, with a path existing from every node to every



other node, so it was possible that the algorithm would not
perform well at all.

Experimental Results
On this particular experiment, the algorithm outperformed
our expectations.  We evaluated the quality of the derived
subsets of instances in terms of the information retrieval
measures of recall, precision and F-measure (Table 1).

Size of
Correct
Subset

Size of
Derived
Subset

Recall Precision F-
Measure

CRW 349 336 0.82 0.85 0.83
Columbia 4299 4212 0.97 0.998 0.98
CONTOUR 1033 992 0.96 0.998 0.98
Helios 1461 1444 0.99 0.999 0.99

Table 1.  Evaluation of derived subsets for each
investigation.
Despite these extremely high outcome measures, the
conclusions that we can draw from this experiment are
very limited.  The domain was clearly well-suited to the
algorithm’s shortest-path heuristic since it had easily-
defined subsets that had very little overlap and linkages
between subsets.  Furthermore, artificial changes to the
domain decreased the number of links between subsets:
instances that could have been in multiple subsets were
often redefined separately in each, and the access
permissions on the different areas made linking across
subsets difficult.  Though we feel that though these
circumstances have probably inflated the results somewhat,
this algorithm would still perform reasonably without the
artificial changes.  However, not all domains are likely to
have such neatly separated relevant subsets, and the
performance of this simple algorithm on such a domain is
unknown.

Discussion
While our experiment does not show that the simple
shortest-path algorithm presented would be adequate in
general, it does show that there is promise in exploring
relatively ontology-neutral methods for deriving relevant
subsets.  Indeed, for the investigations modeled in
SemanticOrganizer, we could have used this method to
derive the subset of instances relevant to each investigation
with excellent results.  Though we have not extended the
algorithm to consider individual knowledge statements
instead of instances, we could do so by including all
knowledge statements that refer only to instances in the
relevant subset and excluding all that refer to instances
outside the subset.

Ultimately, we do not believe that ontology-neutral
automated techniques alone will be adequate in most cases.
Rather, we suggest that they could be used to generate an
initial, rough cut of the relevant subset that could then be

refined.  For instance, the relevant subset could be further
refined by using additional user defined descriptions to add
or subtract from the relevant subset.  Presumably, such
“corrective” abstractions would be simpler to engineer than
those that start from scratch.  One interesting possibility
would be to use the automatically derived subsets to
generate the initial abstraction as a starting point, i.e.,
generating a description that defines a subset that closely
matches the automatically derived subset.  Finally, if
additional refinements were needed, the subsets could be
adjusted manually- again with considerably less overall
effort than if the entire effort had been manual.

Future work
We have explored the use of a general workspace
derivation technique that is independent of a given
ontology, but much work remains to develop widely
applicable techniques.  One possibility for follow-on work
would be to continue to evaluate the simple shortest-path
algorithm in other domains, and to more fully evaluate its
performance in the given experiment.  The shortest path
algorithm could readily be expanded to a weighted path
algorithm that gives different weights for different links,
perhaps based on the ontology or other characteristics.
Furthermore, the current algorithm should be extended to
apply to individual knowledge statements instead of
instances and then evaluated.

Other techniques for deriving the relevant subset should
also be explored.  Heuristics that are not based on
properties of the graph but on information retrieval
methods, such as TF-IDF, are a possibility.  In addition,
standard machine learning methods could be explored,
such as traditional clustering techniques adapted to a
Semantic Web framework or relational data mining
methods.  We have restricted our experiments to deriving
relevant subsets defined by domain, but other kinds of
relevant subsets should be considered, for instance subsets
defined by a specific task, goal, or timeframe.  Finally,
incorporating some amount of semantic interpretation into
these approaches, as well as having them interact with
manually derived abstractions, are directions that we feel
will ultimately be the most successful.

Conclusion
As the Semantic Web gains in popularity and acceptance, it
will also grow in size.  To date, few semantic repositories
have grown to a size that their usability suffers, but
SemanticOrganizer is one such example.  For the vision of
the Semantic Web to be realized, these issues of scale must
be addressed.  We have presented one definition of a
restricted view on a semantic network, which we have
called a workspace .  In essence, a workspace is the
intersection of three sets; what you have permission to see,
what you can understand, and what is relevant in the



current situation.  Of these three concepts, we felt the
latter, what is relevant, was the one most in need of our
attention in the context of the developing Semantic Web.
We have described some of the techniques that can be used
to derive these relevant subsets, and have shown that even
a very simple approach with minimal semantic
interpretation can be successful in some domains.
Ultimately, though, we feel that effective methods will
require a combination of both domain independent and
domain specific approaches.
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